A modular hierarchical approach to 3D electron microscopy image segmentation.

نویسندگان

  • Ting Liu
  • Cory Jones
  • Mojtaba Seyedhosseini
  • Tolga Tasdizen
چکیده

The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

An Improved Pixon-Based Approach for Image Segmentation

An improved pixon-based method is proposed in this paper for image segmentation. In thisapproach, a wavelet thresholding technique is initially applied on the image to reduce noise and toslightly smooth the image. This technique causes an image not to be oversegmented when the pixonbasedmethod is used. Indeed, the wavelet thresholding, as a pre-processing step, eliminates theunnecessary details...

متن کامل

The Watershed Transformation Applied to Image Segmentation

Image segmentation by mathematical morphology is a methodology based upon the notions of watershed and homotopy modification. This paper aims at introducing this methodology through various examples of segmentation in materials sciences, electron microscopy and scene analysis. First, we define our basic tool, the watershed transform. We show that this transformation can be built by implementing...

متن کامل

Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images

We aim to improve segmentation through the use of machine learning tools during region agglomeration. We propose an active learning approach for performing hierarchical agglomerative segmentation from superpixels. Our method combines multiple features at all scales of the agglomerative process, works for data with an arbitrary number of dimensions, and scales to very large datasets. We advocate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 226  شماره 

صفحات  -

تاریخ انتشار 2014